Recent Developments in Risk Assessment: Future Perspectives

Mohammad Modarres
Minta Martin Professor of Engineering
Director, Reliability Engineering Program
Department of Mechanical Engineering
University of Maryland, College Park, MD 20742

Presentation to
GSE Systems
December 18, 2013
Topics

- PRA in Light of the Fukushima Daiichi Accident
- PRA Challenges
 - Modeling
 - Data
- Quick Overview of PRA Advances
- Opportunities for future developments
- Conclusions
Industries with Continued Applications of PRA

- Transportation
 - CNG and H Fueled Vehicles
 - Oil and Gas Pipeline
 - Aerospace

- Food Safety
 - Food production
 - Risks of Epidemics

- Nuclear
 - Post Fukushima
 - Small Modular Reactors
 - Dynamic Characteristics of Multi-Module / Multi-Unit Scenarios
 - Risk Management for Reactor Protection and Accident Mitigation
Critical Safety Implications of Fukushima Events

- Concurrent Events and Common Cause Failures
 - Great East Japan Earthquake followed by tsunami (50 minutes later)
 - Earthquake 9.0 vs. design 8.2
 - Tsunami wave 14 m vs. design 5.7 m
 - Maximum tsunami height 38.9 m in Aneyoshi, Miyako stone marker!
 - Lost offsite power for Units 1-6 due to earthquake
 - Units 1-3 in power operation; Units 4-6 in shutdown
 - All 12 diesel generators in service for Units 1-6 (1 DG for Unit 6 in maintenance) lost due to tsunami

- Simultaneous Damages to the Multiunit Site
 - Hydrogen explosions at Units 1, 3 and 4
 - Melting of multiple reactor cores (i.e., Units 1, 2 and 3) and spent fuels (i.e., Unit 4)
Fukushima Daiichi / Multi-Unit Issues

- Units 1, 2, 3 experienced core damage and large releases of radioactive material from containment
- No core damage at Unit 4 largely due to shutdown/defueled state
- Units 5 and 6 averted core damage due to one EDG being protected from flooding and heroic operator actions
- Key cause of accident was flood damage to emergency switchgear and EDGs located in basement of turbine buildings and resulting station blackout to Units 1-4
- An internal flooding PRA was never done but would have likely identified flood vulnerability and improved flood protection
U.S. Nuclear Plants

Source: K. Fleming
Accident Causation from a PRA Perspective

- Transient, Loss of Coolant Accident (LOCA)
- Seismic, Tsunami, Tornado

- Hardware Failure
- Software Failure

- Pre-Initiator Error
- Post-Initiator Error

- Offsite Power Non-Recovery
- Equipment Non-Recovery, etc.
HTO Perspective

Technical

Human

Organization

Regression
Accident Causation from an HTO Perspective

HTO Triad

Organizational Factors

Latent Conditions

Technological/Environmental Factors

Latent Conditions

Personnel Factors

Active Failures and/or Latent Conditions

Unsafe Acts

Active Failures

Accident
Weaknesses in HTO Elements

<table>
<thead>
<tr>
<th>Element of HTO</th>
<th>Weakness in HTO Elements as Revealed by the Fukushima Accident</th>
<th>Remarks on Global Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>- Inappropriate definition of design basis</td>
<td>Globally was the case prior to the Fukushima accident</td>
</tr>
<tr>
<td></td>
<td>- Improper analysis of plant risk (e.g., underestimation of external events risk, less emphasis on concurrent events and site risk)</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>- Lack of sufficient equipment to cope with extreme events simultaneously affecting the whole site</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Lack of plant emergency guidelines for extreme site events (e.g., as caused by natural disasters)</td>
<td>Globally was the case except the US where post 9/11 mitigative measures are already in place (e.g., Extensive Damage Mitigation Guidelines, portable pumps)</td>
</tr>
<tr>
<td>O</td>
<td>- Lack of emergency management capability for multiunit events</td>
<td>Globally was the case prior to the Fukushima accident except the US where the emergency management capability has been considerably enhanced since the 9/11 terrorist attack</td>
</tr>
</tbody>
</table>
Issues with the Traditional PRAs

- PRAs performed one reactor at-a-time
- Increased likelihood of a single reactor accident due to interactions with other units ignored
- Impact of a severe accident from one unit on the other units ignored
- Risk metrics CDF and LERF don’t capture integrated site risk
- NRC Safety Goals for multi unit / multi-module plants unclear
 - Single reactor PRAs used to justify safety goals conformance
- Essentially all risk-informed regulation applications are based on single unit metrics
 - Risk impacts of multi-unit accidents ignored
Issues with PRA Applications to Multi-Units

- Lack of experience and methods with multi-reactor PRAs
- Dynamic nature of multi-unit interactions
- Single reactor risk metrics such as CDF and LERF are inadequate to capture integrated risks of multi-unit sites
- PRA treatment of accident management is limited to prevention of severe accidents-- not protection and mitigation
- Impact of site contamination on operator actions not considered in PRAs
- Initiating events and accident progression in each reactor don’t consider causal accidents of other units
- Treatment of common cause failures involving components on multi-units not addressed
- Seismic correlation issue already addressed in single reactor PRAs needs to be addressed in multi-unit context
- Operator actions in multi-unit settings are dynamic and different
Past Experiences with Multi-Unit PRAs

- Rudimentary multi-unit Seabrook PRA (mid 1980s) and Byron/Braidwood PRA (late 1990’s) has been done
- Modular HTGR PRAs (mid 1990’s)
- Multi-Module PRA of SMRs (Ongoing)
Causes of Unit-to-Unit Dependencies

Source: S. Schroer
Observed LERs Involving Multi-Units

Source: S. Schroer
Future Directions and Opportunities: SIM-PRA

Source: A. Mosleh
Elements of DPRA

- Modeling system dynamics
- Modeling human interaction and digital control systems
- Capturing uncertainty quantification and sensitivity analysis in the simulation
- Immediate and much needed applications to address multi-unit / multi-module SMR PRA
SMR PRA Modeling Considerations/Complexities

- Integrated Design
 - Integrated Steam Generator / Health Management
 - Integrated Control Rod Drive Mechanism
 - Integrated RCP
 - New Containment-RCS Interactions
 - Integrated Pressurizer

- Passive systems
 - Operability / conditions of operation
 - Failure modes
 - Thermal/mechanical failure mechanisms (e.g., PTS)
 - Long-term component/structure degradation
Multi-Module Risk

- Direct Dependencies
 - Common initiating events / shared SSCs
 - Shared instrumentation, control, fiber optics, other cables, electric divisions
 - Shared systems (e.g., FPS)
 - Capacity of shared equipment (e.g., batteries)
SMR PRA Modeling Considerations/Complexities (Cont.)

- Indirect Dependencies
 - Human/organizational Pre-imitating event dependencies
 - Post accident human actions (operators, fire brigade, etc.)
 - Common environments (caused by)
 - Natural events
 - Internal events (e.g., SBO)
 - Internal events external of the system (e.g., Fire)
 - Accident-induced dependencies (for example hydrogen explosion at Unit 3 of Fukushima disabled fire pumps used for seawater injection at Unit 2. Also, fire/explosion at Unit 4 was caused by leakage of hydrogen released from Unit 3 through shared duct-work with Unit 4)
Other SMR PRA Modeling Considerations/Complexities

- Severe accident phenomena
 - Relevance of severe accident phenomena
 - H generation / explosions
 - Containment failure modes
 - Melt-through phenomena
 - Integrity of integrated structures such as steam generators
 - Integrity of instrumentations

- Long-term cooling
 - Capacity of heat sinks (24 hr, 72 hr, or longer accidents)
 - Conditions necessary to maintain long-term cooling
Other SMR PRA Modeling Considerations/Complexities (Cont.)

- **HRA**
 - Control room crew dynamics
 - Errors of commission
 - Recovery actions / accessibility

- **External events**
 - Seismic hazard
 - Fragilities of integrated structures
 - Combined external initiators

- **Spent fuel pool considerations**
 - Interplay with the operating modules

- **Low Power & Shutdown Events**
What is needed?

- Spatial connections within and between units that affect SSCs
 - Shared heat sink structure
 - Seismic loads for multiple reactor modules
 - Critical initiating events, shared connections, identical components, proximity dependencies, human dependencies, and organizational dependencies

- Thermal-hydraulic and severe accident simulation models of the reactor system including support systems
 - Development of discrete dynamic event tree methodology

- Development of examples (e.g., initiating events that affect multiple reactors, such as loss of offsite power, internal flooding, and seismic events)

- Development of a methodology of quantifying the site CDF using a simulation-based dynamically generated scenarios
Conclusions

• Multi-Unit SMR PRAs are very different from conventional plant PRAs
• Traditional PRA methods and data are inadequate
• Significant opportunities exist to combine simulation models with PRA principles to perform multi-unit PRAs and establish basis for multi-unit accident management
• New standards, regulatory guidance, early interactions with the NRC
• Techniques and tools will have major impact in nuclear and possibly other industries as well